64 research outputs found

    Causal interactions between Frontalθ – Parieto-Occipitalα2 predict performance on a mental arithmetic task

    Get PDF
    Many neuroimaging studies have demonstrated the different functional contributions of spatially distinct brain areas to working memory (WM) subsystems in cognitive tasks that demand both local information processing and interregional coordination. In WM cognitive task paradigms employing electroencephalography (EEG), brain rhythms such as θ and α have been linked to specific functional roles over given brain areas, but their functional coupling has not been extensively studied. Here we analyzed an arithmetic task with five cognitive workload levels (CWLs) and demonstrated functional/effective coupling between the two WM subsystems: the central executive located over frontal (F) brain areas that oscillates on the dominant θ rhythm (Frontalθ/Fθ) and the storage buffer located over parieto-occipital (PO) brain areas that operates on the α2 dominant brain rhythm (Parieto-Occipitalα2/POα2). We focused on important differences between and within WM subsystems in relation to behavioral performance. A repertoire of brain connectivity estimators was employed to elucidate the distinct roles of amplitude, phase within and between frequencies, and the hierarchical role of functionally specialized brain areas related to the task. Specifically, for each CWL, we conducted a) a conventional signal power analysis within both frequency bands at Fθ and POα2, b) the intra- and inter-frequency phase interactions between Fθ and POα2, and c) their causal phase and amplitude relationship. We found no significant statistical difference of signal power or phase interactions between correct and wrong answers. Interestingly, the study of causal interactions between Fθ and POα2 revealed frontal brain region(s) as the leader, while the strength differentiated between correct and wrong responses in every CWL with absolute accuracy. Additionally, zero time-lag between bilateral Fθ and right POa2 could serve as an indicator of mental calculation failure. Overall, our study highlights the significant role of coordinated activity between Fθ and POα2 via their causal interactions and the timing for arithmetic performance

    A Novel, Fast, Reliable, and Data-Driven Method for Simultaneous Single-Trial Mining and Amplitude—Latency Estimation Based on Proximity Graphs and Network Analysis

    Get PDF
    Both amplitude and latency of single-trial EEG/MEG recordings provide valuable information regarding functionality of the human brain. In this article, we provided a data-driven graph and network-based framework for mining information from multi-trial event-related brain recordings. In the first part, we provide the general outline of the proposed methodological approach. In the second part, we provide a more detailed illustration, and present the obtained results on every step of the algorithmic procedure. To justify the proposed framework instead of presenting the analytic data mining and graph-based steps, we address the problem of response variability, a prerequisite to reliable estimates for both the amplitude and latency on specific N/P components linked to the nature of the stimuli. The major question addressed in this study is the selection of representative single-trials with the aim of uncovering a less noisey averaged waveform elicited from the stimuli. This graph and network-based algorithmic procedure increases the signal-to-noise (SNR) of the brain response, a key pre-processing step to reveal significant and reliable amplitude and latency at a specific time after the onset of the stimulus and with the right polarity (N or P). We demonstrated the whole approach using electroencephalography (EEG) auditory mismatch negativity (MMN) recordings from 42 young healthy controls. The method is novel, fast and data-driven succeeding first to reveal the true waveform elicited by MMN on different conditions (frequency, intensity, duration, etc.). The proposed graph-oriented algorithmic pipeline increased the SNR of the characteristic waveforms and the reliability of amplitude and latency within the adopted cohort. We also demonstrated how different EEG reference schemes (REST vs. average) can influence amplitude-latency estimation. Simulation results revealed robust amplitude-latency estimations under different SNR and amplitude-latency variations with the proposed algorithm

    Mining time-resolved functional brain graphs to an EEG-based chronnectomic brain aged index (CBAI)

    Get PDF
    The brain at rest consists of spatially and temporal distributed but functionally connected regions that called intrinsic connectivity networks (ICNs). Resting state electroencephalography (rs-EEG) is a way to characterize brain networks without confounds associated with task EEG such as task difficulty and performance. A novel framework of how to study dynamic functional connectivity under the notion of functional connectivity microstates (FCμstates) and symbolic dynamics is further discussed. Furthermore, we introduced a way to construct a single integrated dynamic functional connectivity graph (IDFCG) that preserves both the strength of the connections between every pair of sensors but also the type of dominant intrinsic coupling modes (DICM). The whole methodology is demonstrated in a significant and unexplored task for EEG which is the definition of an objective Chronnectomic Brain Aged index (CBAI) extracted from resting-state data (N = 94 subjects) with both eyes-open and eyes-closed conditions. Novel features have been defined based on symbolic dynamics and the notion of DICM and FCμstates. The transition rate of FCμstates, the symbolic dynamics based on the evolution of FCμstates (the Markovian Entropy, the complexity index), the probability distribution of DICM, the novel Flexibility Index that captures the dynamic reconfiguration of DICM per pair of EEG sensors and the relative signal power constitute a valuable pool of features that can build the proposed CBAI. Here we applied a feature selection technique and Extreme Learning Machine (ELM) classifier to discriminate young adults from middle-aged and a Support Vector Regressor to build a linear model of the actual age based on EEG-based spatio-temporal features. The most significant type of features for both prediction of age and discrimination of young vs. adults age groups was the dynamic reconfiguration of dominant coupling modes derived from a subset of EEG sensor pairs. Specifically, our results revealed a very high prediction of age for eyes-open (R2 = 0.60; y = 0.79x + 8.03) and lower for eyes-closed (R2 = 0.48; y = 0.71x + 10.91) while we succeeded to correctly classify young vs. middle-age group with 97.8% accuracy in eyes-open and 87.2% for eyes-closed. Our results were reproduced also in a second dataset for further external validation of the whole analysis. The proposed methodology proved valuable for the characterization of the intrinsic properties of dynamic functional connectivity through the age untangling developmental differences using EEG resting-state recordings

    Universal lifespan trajectories of source-space information flow extracted from resting-state MEG data

    Get PDF
    Source activity was extracted from resting-state magnetoencephalography data of 103 subjects aged 18–60 years. The directionality of information flow was computed from the regional time courses using delay symbolic transfer entropy and phase entropy. The analysis yielded a dynamic source connectivity profile, disentangling the direction, strength, and time delay of the underlying causal interactions, producing independent time delays for cross-frequency amplitude-to-amplitude and phase-to-phase coupling. The computation of the dominant intrinsic coupling mode (DoCM) allowed me to estimate the probability distribution of the DoCM independently of phase and amplitude. The results support earlier observations of a posterior-to-anterior information flow for phase dynamics in {α1, α2, β, γ} and an opposite flow (anterior to posterior) in θ. Amplitude dynamics reveal posterior-to-anterior information flow in {α1, α2, γ}, a sensory-motor β-oriented pattern, and an anterior-to-posterior pattern in {δ, θ}. The DoCM between intra- and cross-frequency couplings (CFC) are reported here for the first time and independently for amplitude and phase; in both domains {δ, θ, α1}, frequencies are the main contributors to DoCM. Finally, a novel brain age index (BAI) is introduced, defined as the ratio of the probability distribution of inter- over intra-frequency couplings. This ratio shows a universal age trajectory: a rapid rise from the end of adolescence, reaching a peak in adulthood, and declining slowly thereafter. The universal pattern is seen in the BAI of each frequency studied and for both amplitude and phase domains. No such universal age dependence was previously reported

    Latest advances in human brain dynamics

    Get PDF
    It is paramount for every neuroscientist to understand the nature of emerging technologies and approaches in investigating functional brain dynamics [...

    A multiplex connectivity map of valence-arousal emotional model

    Get PDF
    high number of studies have already demonstrated an electroencephalography (EEG)-based emotion recognition system with moderate results. Emotions are classified into discrete and dimensional models. We focused on the latter that incorporates valence and arousal dimensions. The mainstream methodology is the extraction of univariate measures derived from EEG activity from various frequencies classifying trials into low/high valence and arousal levels. Here, we evaluated brain connectivity within and between brain frequencies under the multiplexity framework. We analyzed an EEG database called DEAP that contains EEG responses to video stimuli and users’ emotional self-assessments. We adopted a dynamic functional connectivity analysis under the notion of our dominant coupling model (DoCM). DoCM detects the dominant coupling mode per pair of EEG sensors, which can be either within frequencies coupling (intra) or between frequencies coupling (cross-frequency). DoCM revealed an integrated dynamic functional connectivity graph (IDFCG) that keeps both the strength and the preferred dominant coupling mode. We aimed to create a connectomic mapping of valence-arousal map via employing features derive from IDFCG. Our results outperformed previous findings succeeding to predict in a high accuracy participants’ ratings in valence and arousal dimensions based on a flexibility index of dominant coupling modes

    Improving the detection of mtbi via complexity analysis in resting - state magnetoencephalography

    Get PDF
    Diagnosis of mild Traumatic Brain Injury (mTBI) is difficult due to the variability of obvious brain lesions using imaging scans. A promising tool for exploring potential biomarkers for mTBI is magnetoencephalography which has the advantage of high spatial and temporal resolution. By adopting proper analytic tools from the field of symbolic dynamics like Lempel-Ziv complexity, we can objectively characterize neural network alterations compared to healthy control by enumerating the different patterns of a symbolic sequence. This procedure oversimplifies the rich information of brain activity captured via MEG. For that reason, we adopted neural-gas algorithm which can transform a time series into more than two symbols by learning brain dynamics with a small reconstructed error. The proposed analysis was applied to recordings of 30 mTBI patients and 50 normal controls in δ frequency band. Our results demonstrated that mTBI patients could be separated from normal controls with more than 97% classification accuracy based on high complexity regions corresponding to right frontal areas. In addition, a reverse relation between complexity and transition rate was demonstrated for both groups. These findings indicate that symbolic complexity could have a significant predictive value in the development of reliable biomarkers to help with the early detection of mTBI

    Typical and aberrant functional brain flexibility: lifespan development and aberrant organization in traumatic brain injury and dyslexia

    Get PDF
    Intrinsic functional connectivity networks derived from different neuroimaging methods and connectivity estimators have revealed robust developmental trends linked to behavioural and cognitive maturation. The present study employed a dynamic functional connectivity approach to determine dominant intrinsic coupling modes in resting-state neuromagnetic data from 178 healthy participants aged 8–60 years. Results revealed significant developmental trends in three types of dominant intra- and inter-hemispheric neuronal population interactions (amplitude envelope, phase coupling, and phase-amplitude synchronization) involving frontal, temporal, and parieto-occipital regions. Multi-class support vector machines achieved 89% correct classification of participants according to their chronological age using dynamic functional connectivity indices. Moreover, systematic temporal variability in functional connectivity profiles, which was used to empirically derive a composite flexibility index, displayed an inverse U-shaped curve among healthy participants. Lower flexibility values were found among age-matched children with reading disability and adults who had suffered mild traumatic brain injury. The importance of these results for normal and abnormal brain development are discussed in light of the recently proposed role of cross-frequency interactions in the fine-grained coordination of neuronal population activity

    The impact of graph construction scheme and community detection algorithm on the reliability of community and hub identification in structural brain networks

    Get PDF
    A critical question in network neuroscience is how nodes cluster together to form communities, to form the mesoscale organisation of the brain. Various algorithms have been proposed for identifying such communities, each identifying different communities within the same network. Here, (using test–retest data from the Human Connectome Project), the repeatability of thirty-three community detection algorithms, each paired with seven different graph construction schemes were assessed. Repeatability of community partition depended heavily on both the community detection algorithm and graph construction scheme. Hard community detection algorithms (in which each node is assigned to only one community) outperformed soft ones (in which each node can belong to more than one community). The highest repeatability was observed for the fast multi-scale community detection algorithm paired with a graph construction scheme that combines nine white matter metrics. This pair also gave the highest similarity between representative group community affiliation and individual community affiliation. Connector hubs had higher repeatability than provincial hubs. Our results provide a workflow for repeatable identification of structural brain networks communities, based on the optimal pairing of community detection algorithm and graph construction scheme
    corecore